В России испытали ракетный двигатель с рекордной длительностью работы

Электрический парус

7-kosmicheskix-dvigatele_454.jpg

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

7-kosmicheskix-dvigatele_455.jpg

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, проект заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

EmDrive

7-kosmicheskix-dvigatele_451.jpg

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах «ведра» – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших «ведро» Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

7-kosmicheskix-dvigatele_452.jpg

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Термоядерный двигатель

7-kosmicheskix-dvigatele_458.jpg

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Плазменный двигатель

7-kosmicheskix-dvigatele_457.jpg

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Ионный двигатель

7-kosmicheskix-dvigatele_456.jpg

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий